

Expanding Integrated Assessment Modelling: Comprehensive and Comprehensible Science for Sustainable, Co-Created Climate Action

IAM COMPACT Modelling Seminars

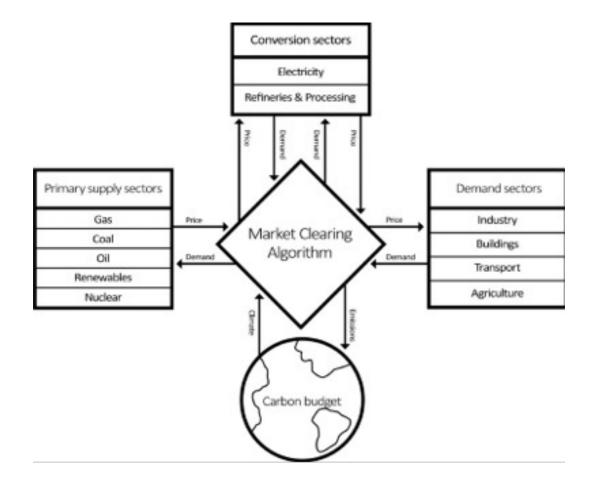
Model Presentation: MUSE

Sustainable Gas Institute, Imperial College London

The IAM COMPACT project has received funding from the European Union's Horizon Europe Research and Innovation Programme under grant agreement No 101056306.

www.iam-compact.eu

- Developed at Imperial College London, Sustainable Gas Institute
- Open-source modelling framework
- Public version available: https://github.com/SGIModel/MUSE_OS
- Taught at Open University Summer School



Course

Agent-based energy systems modelling: MUSE

Model workflow

SOLUTION: Simulation

AIM: Market equilibrium

TEMPORAL DESCRIPTION: Recursive-dynamic

FORESIGHT: Limited

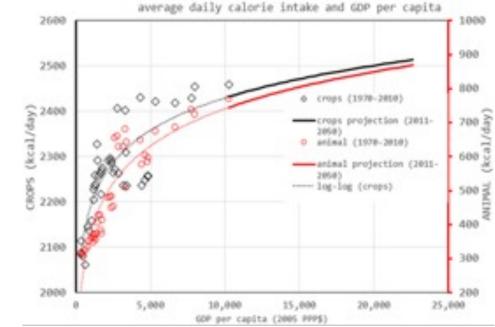
TIME GRANULARITY: Flexible (32 timeslices)

EMISSIONS: CO₂, N₂O, CH₄

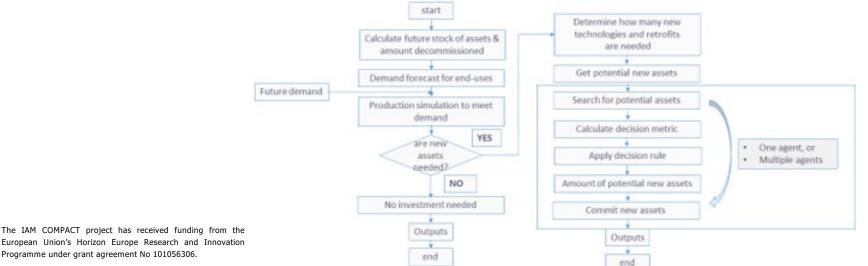
The IAM COMPACT project has received funding from the European Union's Horizon Europe Research and Innovation Programme under grant agreement No 101056306.

Agent-based modelling

- Each type of investors is an agent in the market. All the agents together form a population of agents
- Each agent has different characteristics, called <u>attributes</u> *e.g.* budget, decision strategy
- Each agent has different <u>objectives</u> e.g. economical (e.g. risk prone vs risk adverse), environmental friendliness
- Depending on attributes and objectives, the agent makes the investment decision in his/her search space


 $A = \{Obj, DS, SP, PP\}$

- *Obj* objective:
 - Economic (capital, payback, NPV, etc.)
 - Environmental (energy consumption, CO₂ emissions, etc.)
- DS decision strategy:
 - One objective
 - Multiple objectives
- SP search space:
 - All available alternatives
 - Same type of fuel
 - Popular alternatives (e.g. past decisions)
 - Mature alternatives
- **PP percentage of population** e.g. initial market share


Income Classes US\$	6 classes	
HDD bands	4 bands	
HD per capita classes	3 classes	
Subnational regions considering 3 attributes	14 (for Canada)	
MUSE agent's	s characterisation	
Investment objective	Capital Costs	
Search Rule	Similar	
Decision Method	Single Objective	
Maturity Threshold	no constraint on maturity level.	
Budget to invest in energy technologies	Progressive according to income	
Agent's national share	Population share of each subnational region	

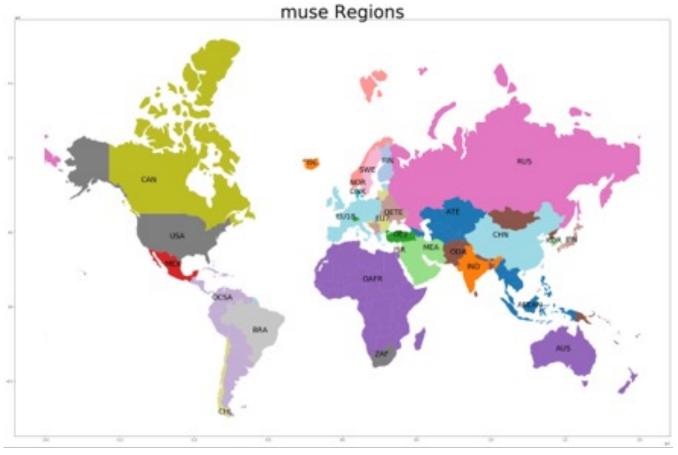
DRIVERS: Service demand projections

DEPENDENCIES: Multi-year regression of based on macro-economic inputs

European Union's Horizon Europe Research and Innovation Programme under grant agreement No 101056306.

Rich in technological detail. Chemical sector: example

Subsector	Commodity	Technologies	CHARACTERISATION:
Chemicals	Ammonia	Ammonia from coal Ammonia from natural gas Ammonia from Heavy Fuel Oil (HFO) Ammonia from biogas Ammonia from water electrolysis	Capital costsFixed Operating Costs
	Benzene	Aromatic extraction Steam cracking	 Variable Operating Costs Energy consumption Lifetime Emissions
	Butadiene	C4 separation Steam cracking	
	Ethylene	Steam cracking	
	Fertilizers (N, P, K)	N-fertilizers from ammonia P-fertilizers from phosphate minerals K-fertilizers from potassium minerals	
	Halogens	Fluorine from HF Bromine by electrolysis Iodine from SO2 and nitrate ores	
	Methanol	Methanol from coal Methanol from natural gas	
	Propylene	Fluid catalytic cracking Steam cracking	
	Toluene	Aromatic extraction Toluene production for TDI	
	Xylenes (isomers)	Aromatic extraction	



The IAM COMPACT project has received funding from the European Union's Horizon Europe Research and Innovation Programme under grant agreement No 101056306.

Regions and sectoral coverage AMPACT

- 28 regions
- 5 end-use sectors
 - Agriculture •
 - Industry •
 - Commercial
 - Residential
 - Transport ۲
- Energy supply sectors:
 - Fossil fuel extraction •
 - **Biomass extraction** •
- Transformation sectors
 - (Bio)Fuel transformation •
 - Electricity •
 - Hydrogen production ۲
- Inter-regional trade in: -
 - Fuels •

- carbon tax or a carbon emissions constraint
- simulate minimum or maximum desired capacity of certain technologies (policy targets) as well as desired levels of operation
- subsidies on selected technologies (through adjusting their costs)
- constraints on the availability of selected technologies (e.g., "no nuclear)
- constraints on the growth rates of selected technologies (e.g., CCS power generation capacity cannot grow at more than 20% per year), addition of capacity (e.g., cannot grow more than 5 GW per year, and cumulative capacity limits (e.g., cannot exceed 60 GW in total, ever).

- What is the role of electrification, fuel switching, and CCS for steel decarbonisation?
 <u>https://www.sciencedirect.com/science/article/abs/pii/S0098135418313644</u>
- How influential are company size and governance on CCS uptake? <u>https://www.sciencedirect.com/science/article/abs/pii/S0959652620318825</u>
- How can investor preferences constrain decarbonisation and delay decarbonisation choices?
 <u>https://www.sciencedirect.com/science/article/pii/S0306261920308072?via%3Dihub</u>
- What is the influence of electricity storage on the uptake of renewables? <u>https://www.sciencedirect.com/science/article/abs/pii/S0301421521000288</u>

SDG	Details
§3. Health (e.g., air-pollution related mortality)	Outputs from the model in terms of fuel usage can inform air quality analysis with reference to exposed agents
§7. Affordable and clean energy	Outputs from the model in terms of low-carbon energy asset capacity, ownership, and operation by different agents can inform assessment of clean energy
§8. Decent work & economic growth	Outputs from the model in term of asset capacity can inform job creation analyses. Economic outputs in terms of investment and policy cost can inform on the effect of climate policies on the economic growth
§15: Life on land	Land use can be modelled alongside afforestation measures

Kerdan, I. G., Giarola, S., & Hawkes, A. (2019). A novel energy systems model to explore the role of land use and reforestation in achieving carbon mitigation targets: A Brazil case study. Journal of Cleaner Production.

Kerdan, I. G., Giarola, S., Jalil-Vega, F., & Hawkes, A. (2019). Carbon Sequestration Potential from Large-Scale Reforestation and Sugarcane Expansion on Abandoned Agricultural Lands in Brazil. Polytechnica, 1-17.

Kerdan, I. G., Jalil-Vega, F., Toole, J., Gulati, S., Giarola, S., & Hawkes, A. (2019). Modelling cost-effective pathways for natural gas infrastructure: A southern Brazil case study. Applied Energy, 255, 113799.

Kerdan, I.G., Giarola, S., & Hawkes, A. (2019). Implications of Future Natural Gas Demand on Sugarcane Production, Land Use Change and Related Emissions in Brazil, J. sustain. dev. energy water environ. syst.

Sachs, J., Meng, Y., Giarola, S., & Hawkes, A. (2019a). An agent-based model for energy investment decisions in the residential sector. Energy, 172, 752-768.

Sachs, J., Moya, D., Giarola, S., & Hawkes, A. (2019b). Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector. Applied Energy, 250, 48-62.

Crow, D. J., Giarola, S., & Hawkes, A. D. (2018). A dynamic model of global natural gas supply. Applied energy, 218, 452-469.

Luh, S., Budinis, S., Giarola, S., Schmidt, T.J., Hawkes A. (2020). Long-term development of the industrial sector – Case study about electrification, fuel switching, and CCS in the USA, Computers & Chemical Engineering, Volume 133.

Budinis, S., Sachs, J., Giarola, S., Hawkes A. (2020). An agent-based modelling approach to simulate the investment decision of industrial enterprises. Journal of Cleaner Production, Volume 267,

Moya, D., Budinis, S., Giarola, S., Hawkes, A. (2020). Agent-based scenarios comparison for assessing fuelswitching investment in long-term energy transitions of the India's industry sector. Applied Energy, Volume 274.

Giarola, S., Molar-Cruz, A., Vaillancourt, K., Bahn, O., Sarmiento, L., Hawkes, A., Brown, M (2021). The role of energy storage in the uptake of renewable energy: A model comparison approach. Energy Policy, Volume 151,

Thank you!

#iam-compact

